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a b s t r a c t 

Intervertebral discs (IVDs) are small joints that lie between adjacent vertebrae. The localization and seg- 

mentation of IVDs are important for spine disease diagnosis and measurement quantification. However, 

manual annotation is time-consuming and error-prone with limited reproducibility, particularly for vol- 

umetric data. In this work, our goal is to develop an automatic and accurate method based on fully con- 

volutional networks (FCN) for the localization and segmentation of IVDs from multi-modality 3D MR data . 

Compared with single modality data, multi-modality MR images provide complementary contextual in- 

formation, which contributes to better recognition performance. However, how to effectively integrate 

such multi-modality information to generate accurate segmentation results remains to be further ex- 

plored. In this paper, we present a novel multi-scale and modality dropout learning framework to locate 

and segment IVDs from four-modality MR images. First, we design a 3D multi-scale context fully convo- 

lutional network, which processes the input data in multiple scales of context and then merges the high- 

level features to enhance the representation capability of the network for handling the scale variation of 

anatomical structures. Second, to harness the complementary information from different modalities, we 

present a random modality voxel dropout strategy which alleviates the co-adaption issue and increases 

the discriminative capability of the network. Our method achieved the 1st place in the MICCAI chal- 

lenge on automatic localization and segmentation of IVDs from multi-modality MR images, with a mean 

segmentation Dice coefficient of 91.2% and a mean localization error of 0.62 mm. We further conduct ex- 

tensive experiments on the extended dataset to validate our method. We demonstrate that the proposed 

modality dropout strategy with multi-modality images as contextual information improved the segmen- 

tation accuracy significantly. Furthermore, experiments conducted on extended data collected from two 

different time points demonstrate the efficacy of our method on tracking the morphological changes in a 

longitudinal study. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Intervertebral discs (IVDs) are spine components that lie be-

ween each pair of adjacent vertebrae. They serve as shock ab-

orbers in the spine and are crucial for vertebral movement. Disc

egeneration ( An et al., 2004; Urban and Roberts, 2003 ) is a com-
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on cause of back pain and stiffness for adults, and is a major

ublic health problem in modern societies. Traditionally, studies on

isc degeneration were done mainly by means of manual segmen-

ation of the discs. Such a manual approach is, however, rather te-

ious and time-consuming, and is often subject to inter- and intra-

bserver variabilities ( Violas et al., 2007; Niemeläinen et al., 2008 ).

n this regard, automatic localization and segmentation of interver-

ebral disc can help to reduce manual labor work and assist in the

isease treatment by providing quantitative parameters, which im-

roves the efficiency and accuracy for spine pathologies diagnosis. 

https://doi.org/10.1016/j.media.2018.01.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2018.01.004&domain=pdf
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Fig. 1. Examples of 3D multi-modality input data. (a) and (b) show two data sets scanned from two different patients, each including four 3D modalities: fat, in-phase, 

opposed-phase, and water (top to bottom). In these figures, we show the 18th slice in the 3D images; red contours indicate the boundary of the IVDs, which are the ground 

truth marked by radiologists. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Magnetic resonance imaging (MRI) is an excellent non-invasive

technique, commonly used in spine disease diagnosis such as disc

herniation degeneration and spinal stenosis ( Tertti et al., 1991;

Schneiderman et al., 1987; Hamanishi et al., 1994; BenEliyahu,

1995 ), due to its excellency in soft tissue contrast without ion-

izing radiation. Multi-modality MR images can be obtained with

different scanning configurations for the same subject (see Fig. 1 ).

Hence, it can provide more comprehensive information for robust

diagnosis and treatment, as demonstrated in the recent work by

Misri (2013) . For example, the in-phase and water image modal-

ities in Fig. 1 have low intensity contrast between the IVDs and

their neighboring regions, while the fat and opposed-phase image

modalities have high intensity contrast. The effective integration

of these multi-modal information facilitates more accurate delin-

eation of the IVD boundary. 

In this work, we are interested in the automatic localization and

segmentation of IVDs from 3D multi-modality spine MR images. Lo-

calization refers to the identification of the centroid of each IVD,

while segmentation refers to the generation of a binary mask to

indicate the IVD regions in the image domain, where a 3D surface

can be constructed for the IVD boundary. 

Automatic localization and segmentation of IVDs from volumet-

ric data are difficult due to following challenges. First, the IVDs

have large variations in shape, even for the same subject, thus hin-

dering robust localization and segmentation as illustrated in Fig. 1 .

Second, the intensity resemblance between IVDs and their neigh-

boring structures interferes the detection of disc boundary. Lastly,

how to take full advantage of multi-modality information to im-

prove the segmentation performance remains to be fully explored. 
a  

Z  
.1. Previous work 

Most of previous methods localized and segmented the IVDs

sing hand-crafted features derived based on intensity and shape

nformation ( Schmidt et al., 2007; Chevrefils et al., 2007; Shi et al.,

007; Corso et al., 2008; Chevrefils et al., 2009; Raja’S et al., 2011;

eubert et al., 2011; Ayed et al., 2011; Law et al., 2013; Haq et al.,

014; Korez et al., 2015 ). For localization, Schmidt et al. (2007) pro-

osed a graphical model based on image intensity and geometric

onstraints for spine detection and labeling. Specifically, they em-

loyed a part-based graphical model to represent both the shape

f local parts and the anatomical structures between the parts.

orso et al. (2008) and Raja’S et al. (2011) independently proposed

wo different graphical models to improve the localization accuracy

y capturing both pixel- and object-level features. 

For segmentation, different types of graph-based methods are

ery popular in the segmentation of vertebrae or discs. For exam-

le, Carballido-Gamio et al. (2004) proposed the normalized cut to

egment vertebral bodies from MR images. Another new form of

raph cuts was proposed by Ayed et al. (2011) . They developed

ew object interaction priors for graph cut image segmentation

nd employed the method to delineate the IVDs in spine MR im-

ges. Recently, Neubert et al. (2011) segmented the IVDs and verte-

ral bodies from high-resolution spine MR images by using a sta-

istical shape model based method. 

Machine learning-based methods have gained increasing inter-

st in the field of medical image analysis. Great successes have

een validated in different medical image analysis problems. For

xample, Kelm et al. (2013) detected spine in CT and MR im-

ges by marginal space learning (MSL), which was proposed by

heng et al. (2008) to localize the heart chamber in 3D CT data
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t first. In the study of Kelm et al. (2013) , the IVDs were de-

ected and segmented based on Haar-like features under a MSL

cheme. Huang et al. (2009) proposed an enhanced Adaboost clas-

ifier with an over-complete wavelet representation to detect ver-

ebra and segment vertebra by iterative normalized-cut method.

nother two regression-based methods were proposed by Chen

t al. (2014, 2015a) and Wang et al. (2015) . Chen et al. (2014,

015a) proposed a unified data-driven estimation framework to es-

imate the image displacements to localize IVDs and then segment

VDs by predicting foreground and background probability of each

ixel in which the neighborhood intensity vector were used as vi-

ual features. While Wang et al. (2015) designed a sparse kernel

achine based regression method taking hand-crafted features in-

luding texture and shape as input to segment disc and vertebral

tructures from both MRI and CT modalities. However, these hand-

rafted features tend to suffer from limited representation capabil-

ty compared with the automatically end-to-end learned features. 

More recently, with the advance of deep learning techniques

 Simonyan and Zisserman, 2014; Long et al., 2015; Chen et al.,

016b; He et al., 2016; Dou et al., 2017 ), many researches have pro-

osed deep learning based methods to localize and segment IVDs

r vertebrae from volumetric data or 2D images ( Cai et al., 2015;

uzani et al., 2015; Chen et al., 2015c; Jamaludin et al., 2016; Chen

t al., 2016a; Zheng et al., 2017 ). For example, Cai et al. (2015) rec-

gnized vertebra by a 3D deformable hierarchical model from

ulti-modality images and achieved the detection by using multi-

odality features extracted from deep neural networks. Although

oth Suzani et al. (2015) and Chen et al. (2015c ) employed deep

earning methods for vertebrae identification in spine images. The

ethod proposed by Suzani et al. (2015) was based on feed-

orward networks and the method designed by Chen et al. (2015c )

as based on convolutional neural networks (CNN). Very recently,

amaludin et al. (2016) proposed a CNN based framework to au-

omatically label each IVD and the surrounding vertebrae with a

umber of radiological scores. They demonstrated that radiologi-

al scores and pathology hotspots can be predicted to an excel-

ent standard using only the “weak” supervision of class labels.

hen et al. (2016a ) introduced a 3D fully convolutional network

FCN) to localize and segment IVDs, which has achieved the state-

f-the-art localization performance in MICCAI 2015 IVD localiza-

ion and segmentation challenge. 

FCNs have become the back-bone of state of the art med-

cal image segmentation systems and a lot of variant FCNs

ave been proposed to advance this stream, including multi-

cale FCN, multi-path fusion and multi-modality FCN. For example,

amnitsas et al. (2017) proposed a multi-scale 3D FCN with two

onvolutional pathways for brain lesion segmentation, where the

ulti-scale information is fed into the network by using the low

esolution and the normal resolution input. Sun et al. (2017) de-

igned a multi-channel FCN to segment liver tumors from CT im-

ges, in which the probability map was generated by features fu-

ion from multiple channels. All these multi-scale FCNs and multi-

ath fusion FCN achieved remarkable improvement. We also pro-

ose a multi-scale FCN with three convolutional pathways, which

hares the same spirit with the multi-scale FCN. However, the net-

ork structure in each pathway is different, providing various ker-

els’ field-of-view in each pathway and enabling feature extraction

or different scale of contexts. 

With various modality images being available in the medi-

al imaging community (e.g., CT, MRI, etc.), multi-modality FCNs

ave also been developed and the contribution of multi-modality

mages was also verified by some very recent deep learning

ased research work on vertebrae ( Cai et al., 2016 ), brain ( Zhang

t al., 2015; Chen et al., 2017a ), and brain tumor segmentation

 Havaei et al., 2016 ), where the segmentation performance can be

ignificantly improved based on the multi-modality data. Despite
f the improvements, none of them have yet explored how to ef-

ectively harness multi-modality images for segmentation perfor-

ance gains. In this regard, we proposed a random voxel dropout

earning strategy which showed to be effective in learning with

ulti-modality images. 

.2. Our contributions 

We propose a 3D multi-scale and modality dropout learning

ramework for localizing and segmenting IVDs from multi-modality

R images. Experimental results on the MICCAI 2016 Challenge on

utomatic Intervertebral Disc Localization and Segmentation from 3D

ulti-modality MR Images demonstrated the superiority of our pro-

osed framework. 

Our main contributions can be summarized as follows: 

1. We propose a novel multi-scale 3D fully convolutional network,

which consists of three pathways to integrate spatial informa-

tion of multiple scales input. This network is inherently general

and can be adopted for other medical image segmentation tasks

to handle objects with large variations, such as tumor segmen-

tation. 

2. We propose a modality drop strategy for maximizing the uti-

lization of complementary information from multi-modality MR

data. This is the first study we are aware of adopting dropout

strategy for segmenting multi-modality images. Experiments 

show that, compared with a network trained without dropout

strategy, the network with dropout strategy can generate more

discriminative features and achieve more accurate segmenta-

tion results. 

3. We applied our method to the datasets of MICCAI 2016 chal-

lenge, which consists of 24 sets of 3D multi-modality MR

images acquired from two different time points. The results

achieved by our method demonstrated the efficacy of our

method on tracking the morphological changes in a longitudi-

nal study. 

This paper is organized as follows. We first present the details

f our method in Section 2 . Dataset and extensive experimental

esults are described in Section 3 . We then discuss the significance

f our work from the perspectives of both clinical application and

omputational analysis in Section 4 . Finally, conclusions are draw

n Section 5 . 

. Methodology 

Fig. 2 presents an overview of our proposed multi-scale FCN

ith random modality voxel dropout learning framework for IVD

ocalization and segmentation from multi-modality MR images. To

andle the scale variations of IVDs, our multi-scale fully convo-

utional network (MsFCN) consists of three pathways, which take

olumetric regions extracted from the same location to harness

ontextual information in different scales. To enhance the train-

ng efficacy, modality dropout strategy is employed on the input

ulti-modality data to reduce the feature co-adaption and encour-

ge each single modality image to provide discriminative informa-

ion independently. In the following, we will first present the ar-

hitecture of 3D FCN, then detail our proposed MsFCN framework

nd finally we elaborate the modality dropout strategy for effective

ulti-modality learning. 

.1. 3D FCN for end-to-end IVD segmentation 

CNNs have achieved remarkable successes in 2D medical im-

ge analysis tasks ( Shin et al., 2016; Shen et al., 2017; Chen et al.,

015b; Sirinukunwattana et al., 2015; Greenspan et al., 2016; Chen

t al., 2017b; Kong et al., 2016; Ronneberger et al., 2015 ), however,
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Fig. 2. Our proposed MsFCN framework for IVDs localization and segmentation. (a) Four modality input images. (b) Our multi-scale learning module. Each pathway contains 

several convolutional layers, ReLU layers, and deconvolutional layers. (c) Score volume. (d) Segmentation results obtained by setting a threshold on the probability map. (e) 

Localization results are the centroids of the IVDs identified in each segmentation mask (shown as the red crosses). (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Scale illustration on one spine image. 
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how to effectively employ CNNs to handle volumetric data still re-

mains an open problem in the field of medical image computing.

One straightforward way is to employ conventional 2D CNNs based

on a single slice and process the slices sequentially ( Jamaludin

et al., 2016; Ji et al., 2016b; Chen et al., 2015c ) or aggregate orthog-

onal planes ( Roth et al., 2014 ). However, this solution may disre-

gard the volumetric contextual information, which would impede

the representation capability of network and thus degrade the per-

formance. One alternative approach is 3D FCN for end-to-end IVD

segmentation, which takes a volumetric image as input and out-

puts the segmented mask directly ( Chen et al., 2016a ). Instead of

using 2D convolutional kernels, 3D FCN encodes richer spatial in-

formation of the volumetric data by employing volumetric kernels.

For max-pooling layers, max-pooling operation is performed in a

3D fashion, where activations with a cubic neighborhood are ab-

stracted and transmitted to higher layers. In addition, 3D decon-

volution layers are adopted to bridge the coarse feature volumes

into dense predictions with the same size to the input image. With

volumetric operations in 3D FCN, the spatial information in three

dimensions can be fully explored and contributes to the segmen-

tation performance improvement. In our work, we adopt a modi-

fied 3D FCN for IVD localization and segmentation as illustrated in

Fig. 2 . 

2.2. 3D multi-scale FCN for context fusion 

One limitation of previous methods on IVD localization and seg-

mentation ( Chen et al., 2016a; Ji et al., 2016a ) is that they usu-

ally considered a single-scale of spatial information surrounding

the discs, which lacks the capability of handling different scales of

anatomical structures. In contrast, multi-scale contextual informa-

tion can contribute to better recognition performance ( Kamnitsas

et al., 2015; Chen et al., 2016c; Zhao et al., 2016; Kamnitsas et al.,

2017 ). Therefore, we propose to use multi-scale FCN for incorporat-

ing contextual information in different scales to conquer the scale

and shape variations of IVDs. Fig. 2 shows the architecture of our

proposed method. Specifically, given four modality data in Fig. 2 (a),

we crop three sizes, i.e., 36 × 60 × 60, 40 × 70 × 70, 46 × 80 × 80,

of volumetric data centered on the same position from the four
odality images. The selection of three scales is based on the ob-

ervation that the IVD horizontally occupies at most 50 voxels in

ll training samples, shown in Fig. 3 . The smallest scale should en-

ure that each IVD can be enclosed within the crop patch and it is

ot necessary to exceed the main spine region too much for intro-

ucing redundant information. With this consideration, three sizes

re cropped, i.e., 36 × 60 × 60, 40 × 70 × 70, 46 × 80 × 80. These

ropped four-modality patches are fed into the network in four

hannels. The multi-scale learning module is used to gather con-

extual information in different scales for the centered region, as

hown in Fig. 2 (b). In our framework, the multi-scale learning

odule contains three pathways. Each pathway consists of several

onvolutional layers with kernel size 1 × 3 × 3 or 3 × 3 × 3 inter-

eaved with activation function, i.e., rectified linear units (ReLU).

o enlarge the receptive field of the network, max-pooling layers

re employed in the intermediate layers. The three pathways are

elicately designed such that the output feature maps are with the

ame size even though the input sizes are different as shown in
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ig. 2 (b). Specifically, the size of feature maps in pathway I re-

ains unchanged since we apply padding operation before each

onvolution layer. However, without padding process, the size of

eature maps will be reduced in pathway II and III. In this way,

he feature map in pathway II and III turns to size 36 ∗ 60 ∗ 60 at

he end, which keeps the consistency with that in pathway I. The

eature maps derived from the three pathways are then concate-

ated together and the following convolutional layers are applied

o generate the final probability map as shown in Fig. 2 (c). The fi-

al IVD segmentation results (see Fig. 2 (d)) can be generated from

he score volume by thresholding (set as 0.9 in our experiments)

nd the localization results are derived as the centroids of each

onnected component of the segmentation mask. In summary, our

rchitecture provides a solution to gather multi-scale contextual

nformation for voxel-wise prediction. Different levels of represen-

ation are fused together for the final prediction which can incor-

orate different scales of context for better recognition. 

.3. Random modality voxel dropout for effective multi-modality 

earning 

Multi-modality images have been utilized in many medi-

al image analysis tasks, which can provide complementary in-

ormation for improving recognition performance. For example,

hang et al. (2015) trained their network on the input of dif-

erent modality images to achieve infant brain image segmenta-

ion. Their experimental results showed that training with multi-

odality data can boost the segmentation performance. However,

imply combining all modality volumes together for training may

ause too much dependency among modalities, which may lead to

eature co-adaption and thus degrades the performance. Recently,

avaei et al. (2016) proposed a deep learning segmentation frame-

ork that can be applied on incomplete multi-modality images.

owever, how to effectively employ the multi-modality images has

ot been fully explored. 

Dropout has been proven with great success in training deep

eural networks by randomly zeroing out the outputs of neurons

 Hinton et al., 2012; Srivastava et al., 2014; Wan et al., 2013; Li

t al., 2016b ). It has been recognized as an effective way to prevent

o-adaption of feature detectors and alleviate the over-fitting issue.

pecifically, each hidden unit in a network trained with dropout

ust learn to work with randomly selected hidden units, which

hould make each hidden unit more robust and force it to create

seful features without relying on other specific units to rectify its

istakes. 

In the field of multi-modality images, the traditional methods

ake all multi-modality images as the input to the neural network

n different channels. The voxels in the same locations at different

odality images may rely on each other. This dependency would

ead to data co-adaption problem in which the neurons detect the

ame feature repeatedly, indicating the network has not achieved

ts full capacity efficiently. To alleviate this problem, we propose a

imple but effective strategy, referred as Random Modality Voxel

ropout (RMVD), which shares the similar spirit with dropout

ethod ( Srivastava et al., 2014 ), to enhance the feature learning

rocess from different modalities. To be more specific, with four

odality images as input shown in Fig. 1 , we randomly zero out

oxels with a certain ratio in the randomly selected modality im-

ge during each training iteration. Then, three modality images

ogether with one randomly selected modality image performed

MVD strategy are input into the network for training. The motiva-

ion of this operation is that the random disappearance of the lim-

ted amount of voxels would force the network to avoid generating

edundant features, thus improving the feature representation ca-

ability of our network. Different from traditional dropout method,

ur RMVD strategy is performed on multi-modality input images.
t test time, we can approximate the effect of averaging the prob-

bility maps from all these dropout neural networks by simply us-

ng a neural network without dropout input data ( Srivastava et al.,

014 ). 

.4. Weighted loss function 

The number of background voxels is much larger than the num-

er of foreground voxels (i.e., IVD) with a ratio of approximately

6:1. The imbalance of training samples would inevitably prohibit

he network learning effective representations for the foreground

lasses. To solve this issue, we adopt the weighted loss function as

ollowing: 

 = 

1 

N 

N ∑ 

i =1 

[ −λ · t x i log p(x i ) − (1 − t x i ) log (1 − p(x i ))] (1)

here λ is the weight for strengthening the importance of fore-

round voxels; N denotes the total number of voxels at the predic-

ion volume; p ( x i ) denotes the corresponding probability value of

VD for voxel x i ; t x i denotes the label at voxel x i . Note that t x i is 1

hen x i is a foreground voxel, otherwise 0. 

We employed the Adam ( Kingma and Ba, 2014 ) optimization al-

orithm for training the whole network, which has been demon-

trated well in training deep neural networks compared to other

ptimization methods. During the inference stage, we directly seg-

ented the original spine image and the probability map of the

hole image was generated in an overlap-tile way. It is worth-

hile noting that the localization and segmentation of IVDs are

eamlessly integrated in our framework and the whole process was

erformed in an automated way without any manual intervention.

. Experiments 

.1. Dataset and pre-processing 

We evaluated our proposed method on the dataset from the

016 MICCAI Challenge on Automatic Localization and Segmentation

f IVDs from Multi-modality MR Images 2 ( Yao et al., 2017 ), which

onsists of 24 sets of 3D multi-modality MR images acquired in

wo different time points from 12 patients involved in the sec-

nd Berlin BedRest study ( Belavy et al., 2010 ). All the images were

canned with 1.5 Tesla MR scanner of Siemens (Siemens Health-

are, Erlangen, Germany) with following protocol: Slice thickness

.0 mm, Pixel Spacing 1.25mm, Repetition Time (TR) = 10.6 ms,

cho time (TE) = 4.76 ms. The aims of this study were to under-

tand the effects of inactivity on the human body and to simu-

ate the effects of microgravity on human body by space agencies

 Belavy et al., 2010; 2011; 2012 ). Each set of data consists of four

odality MR images, i.e., in-phase, opposed-phase, fat, and water

s well as a binary ground truth image. Thus, in total we have 12

ubjects ×2 stages ×4 modalities = 96 volume data, with voxel

pacing of 2 mm ×1.25 mm ×1.25 mm. The four multi-modality im-

ges of each subject at a time point are acquired in the same space

nd thus are aligned with each other. The ground truth segmenta-

ion for each set of data were then manually annotated. Table 1

ummarizes the demographic statistics of the 12 subjects. 

Table 2 shows the details of the training data and test data. Dur-

ng the MICCAI challenge stage, the organizer released Training set

f IVD challenge as the training data. The ground truth (manual an-

otation) of the test data ( Test set of IVD challenge ) was held by the

rganizer for independent evaluation. After the challenge, we ob-

ained Additional training set and conducted extensive experiments

http://ivdm3seg.weebly.com
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Table 1 

Demographic statistics of subjects involved in our study. 

Subject characteristics Mean ± SD Min Max 

Age (year) 35.1 ± 8.5 21 45 

Weight (kg) 69.8 ± 8.0 59 81.8 

Height (cm) 176.0 ± 0.06 169 190 

Table 2 

Dataset details. 

Dataset Subject index 

Training set of IVD challenge A _ S1 , B _ S1 , C _ S1 , D _ S1 , E _ S1 , F _ S1 , 
G _ S1 , H _ S1 

Test set of IVD challenge B _ S2 , F _ S2 , G _ S2 , I _ S2 , J _ S2 , K _ S1 
Additional training set A _ S2 , C _ S2 , D _ S2 , E _ S2 , H _ S2 , I _ S1 , 

J _ S1 , K _ S2 , L _ S1 , L _ S2 

A ,..., L denote the subject index, respectively; S1 and S2 denotes the different time 

points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Results of IVDs localization and segmentation challenge on MICCAI 2016. (8 training 

samples and 6 test samples). 

Method Localization Segmentation Time cost 

MLD(mm) ±
SD(mm) 

MDOC(%) ±
SDDOC(%) Seconds (s) 

Ours ( Li et al., 

2016a ) 

0.62 ± 0.38 91.2 ± 1.8 10 

Regression forest 

and CNNs ( Ji et al., 

2016b ) 

0.64 ± 0.50 90.8 ± 3.9 30 
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on the extended dataset. In the data preprocessing stage, we sub-

tracted the input data by the mean of intensity values of the whole

dataset. 

3.2. Evaluation metrics 

We employed the challenge evaluation metrics to evaluate the

performance of our method regarding the localization and segmen-

tation respectively. We denote m as the number of testing subjects

and d as the number of IVDs in one spine image. Since the chal-

lenge only evaluates 7 IVDs (T11-S1) in each spine image, hence

d = 7 ( Zheng et al., 2017 ). 

1) Localization : Mean Localization Distance (MLD) is used to

measure the accuracy of localization results and standard devia-

tion(SD) quantifies the degree of variation ( Zheng et al., 2017 ). 

MLD = 

∑ m 

i =1 

∑ d 
j=1 R i j 

d · m 

, 

SD = 

√ ∑ m 

i =1 

∑ d 
j=1 (R i j − MLD ) 2 

d · m − 1 

. (2)

where R i j = 

√ 

(�x ) 2 + (�y ) 2 + (�z) 2 measur es the localization

difference for j th IVD in the i th test image; �x, �y, �z denote the

absolute location difference of the identified and ground truth IVD

centers along X, Y, Z axes, respectively. MLD measures the average

localization difference for IVDs. Lower MLD and SD values indicate

better localization accuracy and stability. 

2) Segmentation : For the segmentation, the evaluation criteria

is Mean Dice Overlap Coefficients (MDOC) with standard deviation

(SDDOC). MDOC and SDDOC are defined as: 

MDOC = 

∑ m 

i =1 

∑ d 
j=1 Dice i j 

d · m 

, 

SDDOC = 

√ ∑ m 

i =1 

∑ d 
j=1 (Dice i j − MDOC) 2 

d · m − 1 

, (3)

where Dice i j = 

2 | A ⋂ 

B | 
| A | + | B | × 100% denotes the dice overlap coefficients

(DOC) between the ground truth annotation A and segmentation

result B for the j th IVD of the i th test subject. Larger MDOC value

indicates the higher segmentation accuracy. 

3.3. Results of MICCAI 2016 on-site challenge 

We first present the MICCAI 2016 challenge results of IVD lo-

calization and segmentation, as shown in Table 3 . A total of three

teams participated in the challenge, and our method ranked the

first among them, with MLD of 0.62 mm for localization and MDOC
f 91.2% for segmentation. Fig. 4 showed one example of our re-

ults, which demonstrates that our method can accurately localize

nd segment IVDs from volumetric data. 

In fact, the second-place team ( Ji et al., 2016b ) also employed

NNs, demonstrating the popularity, as well as performance gains

f CNNs for IVD analysis. More specifically, they first coarsely lo-

alized the center of the first IVD by training the random forest

egression ( Gao and Shen, 2014 ) and then sequentially trained the

 th CNN classifier to segment the k th IVD. The center of ( k + 1 ) th

VD can be predicted by the mean shape model and previous

egmented IVDs. During the on-site competition, their method

chieved MLD of 0.64 mm for localization and MDOC of 90.8% for

egmentation. 

In comparison with other methods, experimental results

howed that our method is more accurate than Ji et al. (2016b ),

ith 0.02 mm and 0.04% improvement for localization and seg-

entation, respectively. This is because our method is an end-to-

nd voxelwise segmentation system and we trained the CNN clas-

ifier for all IVDs at the same time, in which the CNN classifier

s capable to recognize the feature relations among IVDs and thus

mproves the training efficiency. For localization part, instead of

oarsely detecting IVDs first, we generate the centroids of each IVD

n the segmentation mask as localization centers. 

The other participant ( Heinrich and Oktay, 2016 ) combined the

antage point forests, Hough aggregation and a simple graphic

odel to localize and segment IVDs. However, their method failed

o segment one case, leading to much larger error in segmentation

nd was dropped out from the on-site competition. As reported

n Heinrich and Oktay (2016) , their method achieved segmentation

ccuracy of 89% (MDOC) and localization error of 0.69 mm (MLD)

n the leave-one-out experiments. 

Regarding the computational performance, our method can be

uite efficient leveraging the fully convolutional architecture. For

 set of multi-modality test images, it approximately took 9s to

et the segmentation result and then an additional 1s to obtain

he localization result using a Titan X GPU. However, the proposed

ethod in Ji et al. (2016b ) took about 30s to obtain the final results

ncluding 25s for segmentation and 5s for localization based on a

esla K80 GPU. Even though the configuration of hardware is dif-

erent, our method is inherently more efficient given the network

rchitecture. 

.4. Ablation study 

In this section, we conduct experiments to investigate the effec-

iveness of using multi-modality input images for automatic IVD

ocalization and segmentation. Moreover, to demonstrate the su-

eriority of our method, experiments are conducted to show the

ffectiveness of each proposed component in our method. Please

ote that the training data in this section is Training set of IVD chal-

enge and Additional training set while the test data is Test set of IVD

hallenge in Table 2 . 
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Fig. 4. One example result from the test data. (a)-(d) are the input images while (e) and (f) are the segmentation result and the localization result, receptively. We present 

the middle sagittal slice of 3D volumetric data for easy visualization. 

Table 4 

Comparison of IVDs localization and segmentation results produced by the network 

with single-modality data input and multi-modality data input (18 training samples 

and 6 test samples). 

Modality Localization Segmentation 

MLD(mm) ± SD(mm) 

MDOC(%) 

± SDDOC(%) 

Single modality fat 0.77 ± 0.49 86.74 ± 3.68 

in-phase 0.87 ± 0.84 86.68 ± 5.13 

opposed-phase 0.44 ± 0.28 89.48 ± 2.61 

water 0.49 ± 0.39 89.68 ± 2.81 

Four modality 0.42 ± 0.29 90.48 ± 1.97 
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.4.1. Effectiveness of multi-modality input images 

We conducted comparative experiments by using networks

rained with input of each single modality images (i.e., fat, in-

hase, opposed-phase, and water) and multi-modality images, re-

pectively. The network employed in this section is the pathway

 of the proposed multi-scale framework (see Fig. 2 ), which is

he baseline . All of these experiments were carried out using the

ame network architecture, training strategies and data augmenta-

ion strategies. Table 4 lists the experimental results. It is observed

hat training with multi-modality images input improves the local-

zation and segmentation accuracy, compared to that with single-

odality image input. This demonstrated that, by providing richer

omplementary information, network trained with multi-modality

mages can generate more discriminative features, hence improving

VD segmentation and localization accuracy. It is worthy to point

ut that results generated from networks trained with opposed-

hase image and water image input have much lower localization

rror and higher segmentation accuracy than that with fat and in-

hased image input. The reason is that opposed-phase and wa-

er images have larger intensity contrast around the IVDs and its
eighboring regions than fat and in-phased images, which ease the

ifficulties for IVDs recognition. 

Figs. 5 and 6 present several examples of localization and seg-

entation results for different experimental settings, including

raining with fat, in-phase, opposed-phase, water modality image

nd multi-modality images. Green contour indicates the segmen-

ation boundary of the IVD region while red contour is the ground

ruth boundary of that region. Green cross mark is the predicted

VD centers while red one is the IVD centers on ground truth im-

ges. If the segmentation and localization are perfect, we will only

ee the green contour or cross mark as it occludes the red one.

t is observed that all the experimental settings can segment and

ocalize IVDs L3-L2 and L4-L3 with reasonable accuracy. This is be-

ause L3-L2 and L4-L3 have regular shape appearance and normal

ize. However, we observed that the segmentation results on most

f IVDs are more accurate in the last experiment than in other ex-

eriments, especially on the 12th sagittal slices in Fig. 5 . Specifi-

ally, segmentation results is not consistent with the ground truth

oundaries in some cases, such as for IVDs S1-L5, L5-L4, L2-L1 in

he first experiment, IVD L1-T12 in the second experiment, IVD S1-

5 in the third and fourth experiments, but the prediction bound-

ries generated from the last experiment can achieve reasonable

ccuracy in these IVD cases. For localization, networks trained with

nput of fat and in-phased images are not able to localize S1-L5

nd L1-T12 in an accurate manner. The localization of S1-L5 and

5-L4 were better predicted in the networks with four modality

mages input rather than the input of opposed-phase or water im-

ges only. These observations confirmed that training with multi-

odality images could achieve better localization and segmenta-

ion results, which can increase the capability of networks to han-

le more challenging targets than with input of single-modality

mages. 



48 X. Li et al. / Medical Image Analysis 45 (2018) 41–54 

L4-L3L5-L4
S1-L5

L3-L2
L2-L1

L1-T12
T12-T11

(a) fat modality

L4-L3L5-L4
S1-L5

L3-L2
L2-L1

L1-T12
T12-T11

(b) in-phased modality

L4-L3L5-L4
S1-L5

L3-L2
L2-L1

L1-T12
T12-T11

(c) opposed-phased modality

L4-L3L5-L4
S1-L5

L3-L2
L2-L1

L1-T12
T12-T11

(d) water modality

L4-L3L5-L4
S1-L5

L3-L2
L2-L1

L1-T12
T12-T11

(e) four modality modality

Fig. 5. Examples of the segmentation results for test subject G_S2. For clear visualization, we show results on the 12th slice of in-phase modality image. (a), (b), (c), (d) and 

(e) are the segmentation results generated from networks with fat, in-phased, opposed-phased, water images and four-modality images, respectively. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 

L4-L3
L5-L4

S1-L5
L3-L2

L2-L1
L1-T12T12-T11

(a) fat modality

L4-L3
L5-L4

S1-L5
L3-L2

L2-L1
L1-T12T12-T11

(b) in-phased modality

L4-L3
L5-L4

S1-L5
L3-L2

L2-L1
L1-T12T12-T11

(c) opposed-phased modality

L4-L3
L5-L4

S1-L5
L3-L2

L2-L1
L1-T12T12-T11

(d) water modality

L4-L3
L5-L4

S1-L5
L3-L2

L2-L1
L1-T12T12-T11

(e) four modality

Fig. 6. Examples of the localization results for test subject B_S2. For clear visualization, we show results on the 25th slice of in-phase modality image. (a), (b), (c), (d) and 

(e) are the localization results generated from networks with fat, in-phased, opposed-phased, water images and four-modality images, respectively. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Comparison and effectiveness of methods on IVD localization and segmentation (18 

training samples and 6 test samples). 

Method Localization Segmentation 

MLD(mm) ± SD(mm) MDOC(%) ± SDDOC(%) 

Baseline 0.42 ± 0.29 90.48 ± 1.97 

U-Net ( Çiçek et al., 2016 ) 0.37 ± 0.20 90.97 ± 2.27 

MsFCN 0.39 ± 0.24 91.17 ± 2.07 

MsFCN-A + RMVD 0.37 ± 0.21 90.72 ± 2.54 

MsFCN + RMVD 0.36 ± 0.21 91.34 ± 2.16 

Notice: MsFCN-A denotes the MsFCN framework with same input size in each path- 

way. 
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3.4.2. Effectiveness of learning techniques 

To investigate the effectiveness of our proposed learning tech-

niques including both 3D multi-scale learning module (MsFCN)

and random modality voxel drop strategy (RMVD), we compare

the segmentation results achieved by the baseline, MsFCN, Ms-

FCN+RMVD, MsFCN-A + RMVD and 3D U-Net ( Çiçek et al., 2016 ).

All experiments have the same training strategies and data aug-

mentation strategies for fair comparison. 

Comparison of baseline and MsFCN. Table 5 presents the lo-

calization and segmentation results of these three experimental

configurations. It is observed that our MsFCN can generate much

better results than directly employing the single-scale input deep

neural network, with a localization error of 0.03 mm improvement

on the MLD metric and a segmentation accuracy of 0.69% improve-

ment on the MDOC evaluation. This is because most of the IVDs

have varying shapes (see Fig. 1 ). Training the segmentation net-

work with 3D MsFCN instead of the single-scale input neural net-

work can effectively integrate the different levels of contextual in-

formation, hence improving the capability to discriminate features

for better recognition. 

L  
Figs. 7 and 8 show some examples of the segmentation results

chieved by the baseline, MsFCN and MsFCN with RMVD on two

ifferent test subjects. In Fig. 7 , we can clearly see that green con-

ours are more consistent with red contours for most of IVDs in

ig. 7 (b) than that in Fig. 7 (a), especially for IVDs S1-L5, L5-L4, L2-

1, T12-T11. Also, it is observed in Fig. 8 that IVDs S1-L5, L2-L4,

1-T12, L5-L4 were segmented more accurately in Fig. 8 (b) than
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T12-T11
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L1-T12

T12-T11

(a) Segmentation results generated by the baseline
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L5-L4
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L1-T12

T12-T11

L4-L3
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T12-T11

L4-L3
L5-L4
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T12-T11

(b) Segmentation results generated by MsFCN

L4-L3
L5-L4
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L3-L2
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L1-T12

T12-T11

L4-L3
L5-L4

S1-L5
L3-L2

L2-L1
L1-T12

T12-T11

L4-L3
L5-L4

S1-L5
L3-L2

L2-L1
L1-T12

T12-T11

(c) Segmentation results generated by MsFCN+RMVD

Fig. 7. Examples of segmentation results from one test subject B_S2. From left to right, each column shows the segmentation results on the 6th, 20th and 27th sagittal slices. 

(a), (b) and (c) are the segmentation results generated by the baseline, MsFCN and MsFCN + RMVD, respectively. Red: the ground-truth contour. Green: our segmentation 

contour. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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(a) Segmentation results generated by the baseline
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(b) Segmentation results generated by MsFCN
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(c) Segmentation results generated by MsFCN+RMVD

Fig. 8. Examples of segmentation results from test subject G_S2. From left to right, each column shows the segmentation results on the 10th, 28th and 30th sagittal slices. 

(a), (b) and (c) are the segmentation results generated by the baseline, MsFCN and MsFCN + RMVD, respectively. Red: the ground-truth contour. Green: the our segmentation 

contour. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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(a) Localization results generated by the baseline
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(b) Localization results generated by MsFCN
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(c) Localization results generated by MsFCN+RMVD

Fig. 9. Examples of localization results from test subject B_S2. From left to right, each column shows the localization results on the 10th, 20th and 26th sagittal slices. (a), (b) 

and (c) are localization results generated by the baseline, MsFCN and MsFCN + RMVD, respectively. Red: the ground-truth. Green: our localization results. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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those generated by the baseline. These observations demonstrated

that MsFCN is more powerful in the IVD segmentation than net-

work with single-scale input image, indicating that MsFCN has the

promising ability of discriminative feature generation. Examples of

localization results on one test image were shown in Fig. 9 . 

Comparison of MsFCN and MsFCN + RMVD. From Table 5 , it is

observed that the results achieved by MsFCN + RMVD have higher

segmentation and localization accuracy than MsFCN, with segmen-

tation accuracy of 0.17% improvement on the MDOC metric and lo-

calization error of 0.03 mm improvement on the MLD metric. The

performance improvement is attributed to that drop random vox-

els on multi-modality images in each training propagation can al-

leviate the co-adaption issue among multi-modality images, which

benefits the optimization of multi-modality learning. 

From the comparison in Fig. 7 (b) and (c), green contours

achieve a better consistency with red contours for most of IVDs

in Fig. 7 (c) than Fig. 7 (b). The same situation can also be observed

from the segmentation results on the other test images. For ex-

ample, IVDs L4-L3 and L3-L2 were segmented more accurately in

Fig. 8 (c) than that in Fig. 8 (b). Similarly, the comparison of local-

ization results in Fig. 9 (b) and (c) also indicates that MsFCN with

RMVD attained better performance in the IVD localization than

that without. 

Comparison of MsFCN + RMVD and MsFCN-A + RMVD. To ex-

plore the key factor in our proposed MsFCN, we compare the

MsFCN + RMVD with MsFCN-A + RMVD, where MsFCN-A denotes

the MsFCN with input of the same-scale patches in each pathway.

From this comparison, we can explore whether the different scale

contexts contribute to the performance gains. Both two experi-

ments were conducted under same environmental settings. From

Table 5 , it is observed that our method consistently surpassed the

MsFCN-A counterpart, which indicates that the MsFCN improves
he segmentation results by incorporating different scale contexts,

ot only the model combination. 

Comparison of MsFCN + RMVD and 3D U-Net. We also com-

are our method with 3D U-Net ( Çiçek et al., 2016 ) for volumet-

ic segmentation, one of the most known frameworks in medical

mage community. To keep consistency with our architecture, we

ropped raw images with size 32 × 64 × 64. From Table 5 , it is ob-

erved that our method consistently outperformed U-Net architec-

ure. Compared with U-Net, our architecture has at least two ad-

antages. First, we shed light on how to effectively extract features

rom multi-modality images, which has not been explored in U-

et. Second, our method incorporates different scales of contexts

n the architecture and improves the feature representation ability,

hich also contributes to the performance gains. 

.5. System implementation 

We implemented the proposed method with Python based on

heano 3 library on a workstation equipped with a GPU of Nvidia

eForce GTX Titan X. The networks were trained with Adam

ethod ( Kingma and Ba, 2014 ) (we set the batch size as 10 and

he learning rate as 0.001 initially, and then gradually reduced the

earning rate by a factor of 5 every 30 0 0 iterations). The weights

ere randomly initialized from a Gaussian distribution ( μ = 0 ,

= 0 . 01 ) and updated with a standard back-propagation. In the

esting stage, the prediction results of the whole image were gen-

rated with an overlap-tile strategy. Leveraging the architecture of

ully convolutional neural network, our method was quite efficient

uring the inference stage. It took about 10s on average to process

ne subject for IVD localization and segmentation. For the determi-
3 Theano: http://deeplearning.net/software/theano . 

http://deeplearning.net/software/theano
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Fig. 10. Visualization of the average absolute voxel changes for each IVD in 12 sub- 

jects within two time points of the prolonged bed test study. 
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ation of dropout ratio, we tried three ranges of ratio, i.e., 0.1, 0.01,

.001 and found the segmentation performance achieved the best

erformance when drop ratio was set as 0.01. Too large ratio may

ead to contextual information loss and degrades the performance. 

.6. Two-stage study 

The MICCAI challenge dataset was collected at two different

ime points of the prolonged bed rest study ( Belavy et al., 2010 )

ith the aims of understanding the effects of inactivity on the hu-

an body and to simulate the effects of microgravity on IVD mor-

hology profile by space agencies ( Belavy et al., 2010; 2011; 2012 ).

hus, it is important to know the changes of IVD morphology pro-

le in different time points of the prolonged bed rest (spaceflight

imulation). Fig. 10 presents the average absolute volume differ-

nce for IVD in each subject during two time points. It is observed

hat the dataset has large volume difference variations at two time

oints, which is a challenging dataset to evaluate the capability of

ur methods in modeling the morphology profile changes. 

To measure the accuracy of our method on modeling the vol-

me difference at two individual time points, we designed the ab-

olute value of relative volume difference (arvd) metric: 

rv d = 

∣∣∣∣∣
∣∣V g1 − V t2 

∣∣ −
∣∣V g1 − V g2 

∣∣
V g1 

∣∣∣∣∣ (4) 

here V g 1 and V g 2 denote the IVD volume size on ground truth

mages collected at time point 1 and 2, respectively; V t 2 is the

roduced IVD volume size from our method on test subjects col-

ected at time point 2. The smaller the arvd is, the better perfor-

ance our method achieves on modeling the changes. Table 6 lists

he arvd value on the experiments which employs subjects at time

oint 1 as training data while subjects at time point 2 as test data.

t is observed that the value of arvd is quite small in most sub-

ects; this observation demonstrated that our method has promis-

ng performance in the volume changes prediction, and can help

nderstand the effects of inactivity on the human body as well as

he IVD simulation in microgravity environment. However, we ob-

erved that the arvd value in subject H is a bit high, due to that the

VD volume size in this subject is much larger than other subjects

s shown in Fig. 10 . This situation also presents in the 1st and 7th

VD in some subjects (e.g., subject E,J and K) since T12-T11, S1-L5

nd L1-T12 IVDs are usually small. The results in Table 7 present
he high accuracy for IVD localization and segmentation prediction

chieved by our method in spine images on IVD morphology pro-

ling, demonstrating the excellent robustness of our method. 

. Discussion 

IVD localization and segmentation have great significance in

pine pathologies diagnosis. For example, IVD degeneration has

een proven to be associated with the low back pain (LBP), one

f the most prevalent health problems amongst the world’s pop-

lation, in many clinical studies ( Fraser et al., 1993; Luoma et al.,

0 0 0; Kjaer et al., 20 05 ). However, in current clinical routine, the

anual labeling is time-consuming, laborious and error-prone. To

elieve the workload of radiologists, we proposed an integrated

D multi-scale FCN with random modality voxel dropout learning

or IVD localization and segmentation framework. Regarding to the

andom modality voxel dropout strategy, to the best of our knowl-

dge, this is the first study that explores modality related method

n clinical IVD segmentation applications from multi-modality im-

ges. Extensive experimental results demonstrated the efficacy and

obustness of our method. It also surpassed other methods pre-

ented in MICCAI 2016 IVD localization and segmentation challenge. 

In the training of deep neural networks, it usually demands a

arge number of training samples due to the plenty of parame-

ers in the network. The larger amount of training data can con-

ribute to better segmentation and localization results. We trained

he network with Training set of IVD challenge during the on-site

ompetition as shown in Table 3 while used the Training set of IVD

hallenge and Additional training set as training data in the exper-

ments shown in Table 5 . Compared with the results achieved in

xperiments shown in Table 3 , network with additional training

et input has 0.26 mm relative improvement on the MLD metric

or localization and 0.14% relative improvement on the MDOC met-

ic for segmentation, indicating that more training data can con-

ribute to better segmentation and localization performance (see

able 5 ). From these results, we anticipate that the performance of

ur method will be further improved with more training data, but

he space of performance improvement is becoming diminished. 

Although our method achieved appealing localization and seg-

entation results in most cases, there are still some limitations.

irstly, it is observed in Fig. 11 that the unsatisfactory segmen-

ations occur at boundary slices (the start and the end slice of

VDs). The blurred and noisy IVDs as well as the lack of spatial

nformation on these positions lead to the low accuracy of the

egmentation. In the future, we shall investigate how to utilize

ome image processing techniques (e.g., image deblurring and im-

ge normalization) to further improve the performance. Moreover,

t is important to acquire 3D MR data with a high resolution on

he third dimension. With a large number of slices available in

ach 3D volume, the more detailed structure can be shown on the

hird dimension, which would also contribute to the performance

ains. Furthermore, due to the limited data used in our longitudi-

al study, we conducted an experiment using dataset acquired at

ne time point as the training data and the dataset at the other

ime point as the test data. A more realistic setup would be to

onduct a leave-one-subject-out study if a large number of lon-

itudinal data would be available. Nevertheless, the results as we

eported in Table 7 demonstrate the potential of our method in

racking morphological changes in a longitudinal study. 

Another clinical importance is that our method holds the poten-

ial to save time and manual cost, and allow for a true 3D quan-

ification avoiding problems caused by 2D measurements. Previous

tudies ( Belavy et al., 2011; 2012 ) have shown that changes in IVD

orphology profile persisted 5 months after 21-day bed rest and

hat the recovery of the lumbar intervertebral discs after 60-day

ed rest was a prolonged process and incomplete within 2 years.
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Table 6 

The arvd value between ground-truth IVDs of time point 1 and segmented IVDs of time point 2 in the prolonged bed rest study (12 training samples 

and 12 test samples). 

Subject 

IVD index A B C D E F G H I J K L 

1 2.9% 2.7% 1.0% 0.8% 11.0% 0.78% 10.7% 11.7% 3.4% 8.8% 10.3% 0.1% 

2 2.1% 1.6% 1.4% 2.5% 5.9% 0.5% 1.7% 7.1% 13.2% 1.6% 1.3% 0.1% 

3 0.8% 0.2% 2.6% 1.2% 6.6% 4.3% 2.3% 14.6% 10.9% 3.6% 0.04% 0.3% 

4 1.9% 5.2% 4.4% 0.4% 4.4% 1.5% 1.8% 17.9% 7.1% 8.2% 0.6% 5.4% 

5 2.0% 4.8% 8.3% 4.0% 4.3% 1.6% 2.1% 21.5% 4.8% 2.3% 4.1% 3.5% 

6 3.7% 2.4% 4.8% 2.7% 4.1% 3.8% 7.1% 17.4% 4.2% 1.6% 8.0% 0.1% 

7 1.6% 21.9% 6.7% 3.3% 14.8% 2.1% 9.4% 21.1% 4.4% 2.7% 8.7% 5.7% 

Fig. 11. Worse cases generated by our method. 

Table 7 

Evaluation of IVD localization and segmentation on datasets acquired from two dif- 

ferent time points (12 training samples and 12 test samples). 

Training data Test data Localization Segmentation 

MLD(mm) ± SD(mm) MDOC(%) ± SDDOC(%) 

Time point 1 Time point 2 0.47 ± 0.45 90.56 ± 2.48 

Time point 2 Time point 1 0.46 ± 0.34 90.48 ± 0.02 
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The limitation of these studies, however, lies in the tools that they

used to measure the IVD morphology changes. At this moment,

clinicians lack tools to conduct a true 3D quantification even when

3D MR image data are available. Instead, they seek to use 2D sur-

rogate measurements measured from selected 2D slices to quantify

3D IVD morphology ( Belavy et al., 2011; 2012 ). In some extent, our

proposed method may alleviate manual labor work and also ad-

vanced the 3D quantification of the IVD morphology changes. 

5. Conclusion 

In this paper, we present a novel system that achieved state-

of-the-art IVD segmentation performance from multi-modality im-

ages. Compared with network trained with single-scale context im-

age, the proposed 3D multi-scale FCN can generate features with

high discrimination capability, and hence improve the performance

on IVD localization and segmentation tasks. We also employed ran-

dom modality voxel dropout strategy in the training phase to fur-

ther effectively integrate the multi-modality information and en-

hance the learning capability. The results of 2016 MICCAI challenge

on IVD localization and segmentation demonstrated the effective-

ness of our proposed method. Extensive experiments were con-

ducted to validate the robustness of our method on morphology

profiling volume changes at individual collection time points. This

plays an important role in the study of the effects of inactivity as

well as the IVD simulation in microgravity environment at differ-

ent time points. 
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